Translational Data Science for Population Health

Marco Spruit | Research Overview

1 Febr 2021

Agenda

1.Introductions

About me, Data Science concepts

2. Research projects showcase

• STRIPA, COVIDA, SNPcurator

3. Research agenda

Research Framework & Instantiation

4. Discussion

Alignment with NLAIC wg B&PP

Introduction: Marco Spruit

1993

 Information Retrieval programmer, ZyLAB Europe

1995

 Big Data system developer, Royal Netherlands Navy (Intelligence & Security Service)

1997

 Product software developer/entrepreneur, Insertable Objects & Wizzer BV

2003

 Ph.D researcher in Computational Linguistics, University of Amsterdam

2007

- Assistant → Associate professor Information Science, Utrecht University
 - Applied Data Science Lab

2020

- Professor Advanced Data Science in Population Health, LUMC/Leiden University
 - PH Living Lab
 - CAIRE Lab

Introduction: Data Science Continuum

Foundational Data Science

Applied Data Science

Self-Service Data Science Citizen Data Science

- Basic
- Algorithms
- Comput. Experiments
- Data Scientists

- Translational (T1)
- Meta-Algorithmic Models, Notebooks
- Design Science, CRISP-DM
- Data Analysts

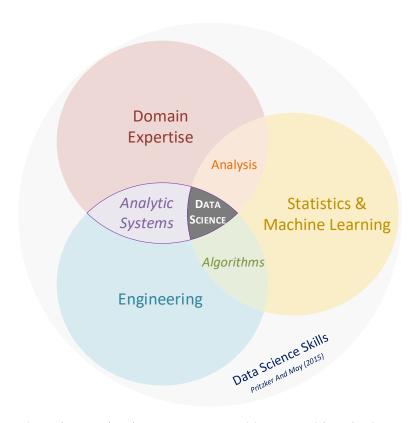
- Translational (T2)
- Adaptive Analytic Systems, Dashboards
- Prototyping, CRISP-DM
- Researchers

Applied

Research type

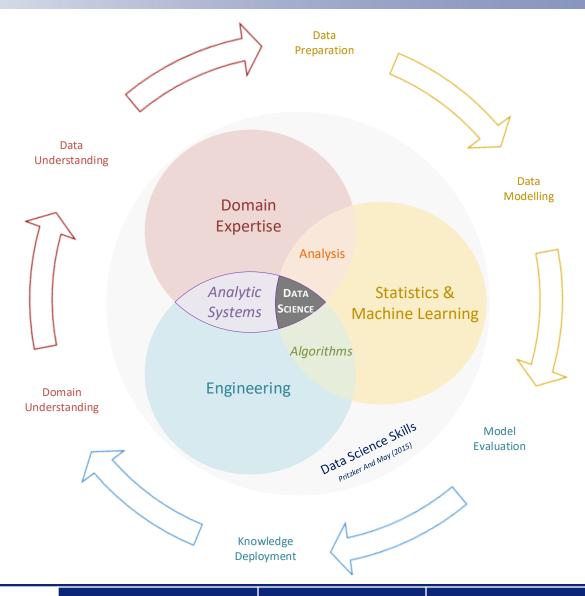
• N/A Research artifacts

• CRISP-DM


Research methods

Citizens

Target audience


- **Applied data science** is the knowledge discovery *process* in which analytical applications are designed and evaluated to improve the daily practices of domain experts (Spruit & Jagesar, 2016; Spruit & Lytras, 2018)
- **Self-service data science** is the knowledge discovery process in which analytic systems are designed and evaluated to empower domain professionals to perform their own data analyses on their own data sources *without coding* in a reliable, usable and transparent manner within their own daily practices (Spruit & Vries, 2020; Ooms & Spruit, 2020)
- Translational Data Science = Applied + Self-service data science

Introduction: Data Science Skills

Pritzker, P., & May, W. (2015). NIST Big Data interoperability Framework (NBDIF): Volume 1: Definitions. NIST Special Publication, 1500(1). https://doi.org/10.6028/NIST.SP.1500-1r2

Introduction: Data Science Process

Agenda

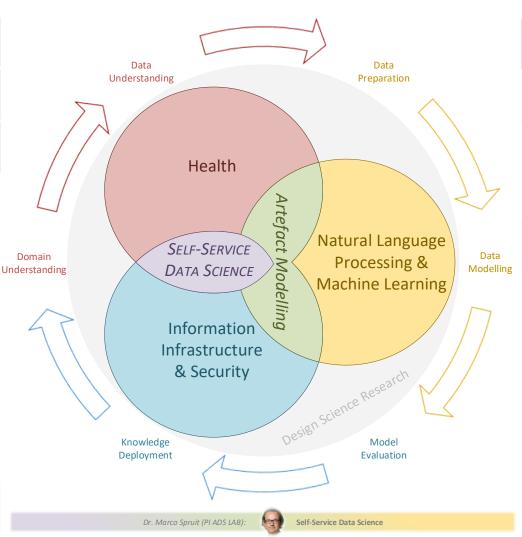
1. Introductions

About me, Data Science concepts

2.Research projects showcase

• STRIPA, COVIDA, SNPcurator

3.Research agenda


• Research Framework & Instantiation

4. Discussion

Alignment with NLAIC wg B&PP

Projects: Applied Data Science Lab

Title: OPTICA (2017-2020) [SNF_{ol}]
Topic: STRIP Assistant in Swiss Primary Care
Programmer: Edwin Brinkhuis (0.5 fte)

Title: PRAISE (2015-2019) [UMCU]
Topic: Big Data and NLP in Psychiatry
PhD student: Vincent Menger (1.0 fte)
Location: UU

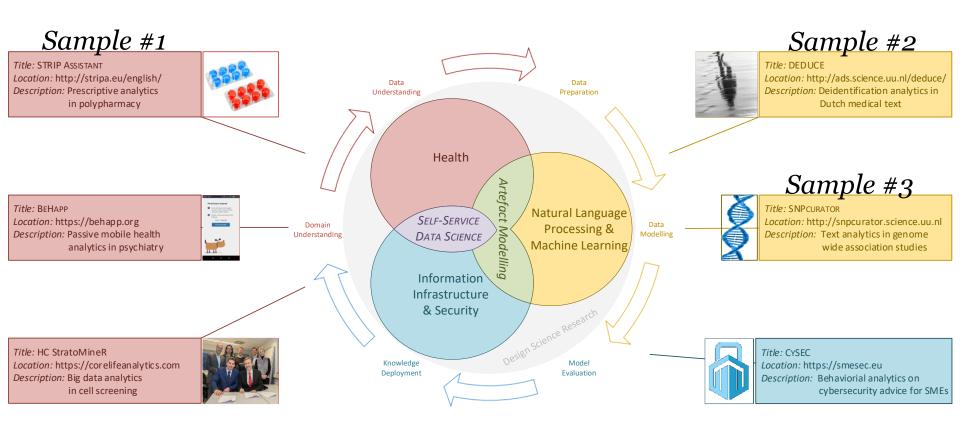
Title: COVIDA (2019-2023) [UU/UMCU/TUE]
Topic: Dutch NLP Self-Service for Healthcare
Postdoc: Pablo Mosteiro (1.0 fte)
Location: UU

Title: COVIDA (2019-2023) [UU/UMCU/TUE]
Topic: Dutch NLP Self-Service for Healthcare
PhD student: Emil Rijcken (1.0 fte)
Location: TU/e

Title: TAILS (2016-2020)
Topic: NLP in Biomedical Sciences
PhD student: Noha Seddik Tawfik (0.4 fte)
Location: AAST, Egypt

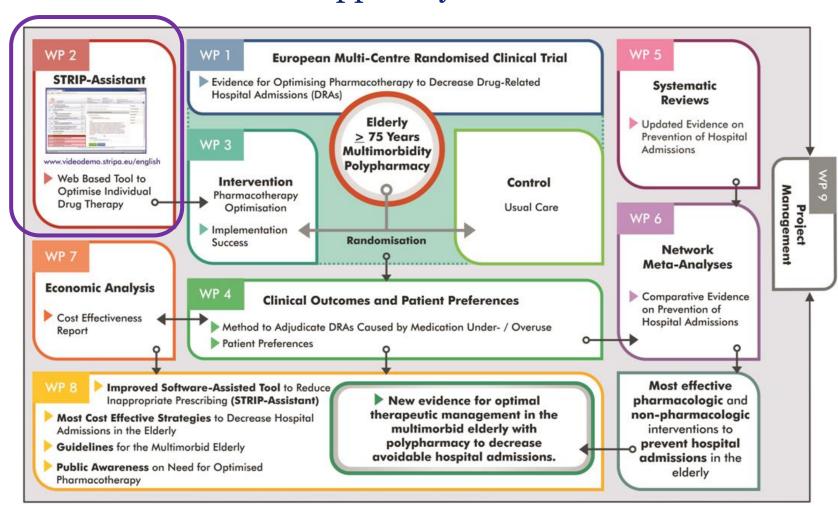
Title: OPERAM (2015-2020) [Horizon2020]
Topic: STRIP Assistant in EU Secondary Care
PhD student: lan Shen (1.0 fte) +
Postdoc: Michiel Meulendijk (2015-2016)
Location: UU

Title: SAF21 (2015-2019) [HORIZON2020/ITN]
Topic: NLP in Fisheries
PhD student: Shaheen Syed (1.0 fte)
Location: MMU, UK


Title: DEQUES & GEIGER (2018-2022)
Topic: Deep Learning for Open Inf Extraction
PhD student: Ingy Sarhan (0.4 fte)
Location: AAST, Egypt

Title: SPEECHAS (2018-2023) [P-DIRECT]
Topic: Speech & Text Analytics in HR
PhD student: Chaïm van Toldeo (0.4 fte)
Location: P-Direct

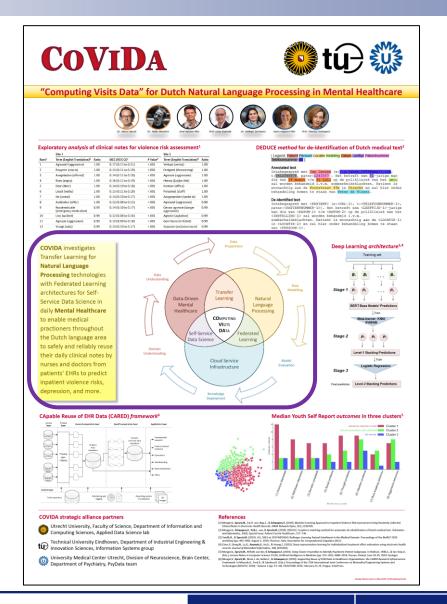
Title: GEIGER (2020-2024) [HORIZON2020]
Topic: Security metric and knowledge graph
PhD student: Max van Haastrecht (1 fte)
Location: UU


Location: Centric

Projects: Analytic Systems

Sample #1: STRIP Assistant (STRIPA)

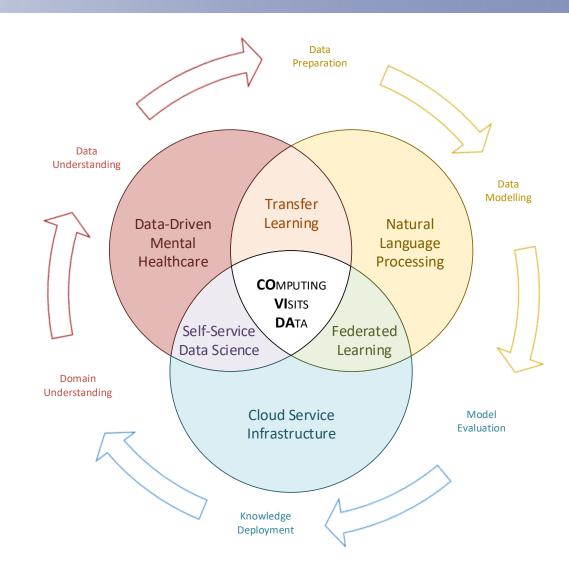
•A Clinical Decision Support System for Medication Reviews



url: https://bit.ly/stripa3-nl-preview

Sample #1: STRIP Assistant (STRIPA)

OPERAM Dr. Marco						V2000 051 04 445 451 400
OPENAIVI Dr. Marco	Spruit managing					V2020.05b.04a / IE / EN / SS
Add new patient						
Patient 1	М	75	No	No	No	START
Patient 2	F	77	No	No	No	START
Patient 3	M	99	No	No	Yes	START
Patient 4	F	79	No	No	Yes	START
Patient 5	F	81	No	No	Yes	START
Patient 6	F	86	No	No	Yes	START
Patient 7	М	78	No	No	No	START
Patient 8	М	80	No	No	Yes	START
Patient 9	F	74	No	No	No	START
Patient 10	F	77	No	No	No	START
Patient 11	М	72	No	No	No	START
Patient 12	F	70	No	No	Yes	START
Patient 13	М	81	No	No	Yes	START
Patient 14	М	70	No	No	Yes	START
Patient 15	М	73	No	No	Yes	START
Patient 16	М	77	No	No	Yes	START
Patient 17	F	67	No	No	Yes	START
Patient 18	М	76	No	No	Yes	START
Patient 19	F	74	No	No	Yes	START
Patient 20	F	80	No	Yes	Yes	START
Patient 21	М	80	No	No	Yes	START
Patient 22	М	79	No	No	Yes	START
Patient 23	F	87	No	No	Yes	START
pen 'https://stripa.nl/OPERAMIE/dashi	board?patient=8' in een nieuw tabblad	-00	V	NI-	V	OTABT


Sample #2: Computing Visits Data (COVIDA)

url: https://bit.ly/covida-poster

Sample #2: Computing Visits Data (COVIDA)

COVIDA investigates Transfer Learning for **Natural Language Processing** technologies with Federated Learning architectures for Self-Service Data Science in daily Mental Healthcare to enable medical practioners throughout the Dutch language area to safely and reliably reuse their daily clinical notes by nurses and doctors from patients' EHRs to predict inpatient violence risks, depression, and more.

url: https://bit.ly/covida-poster

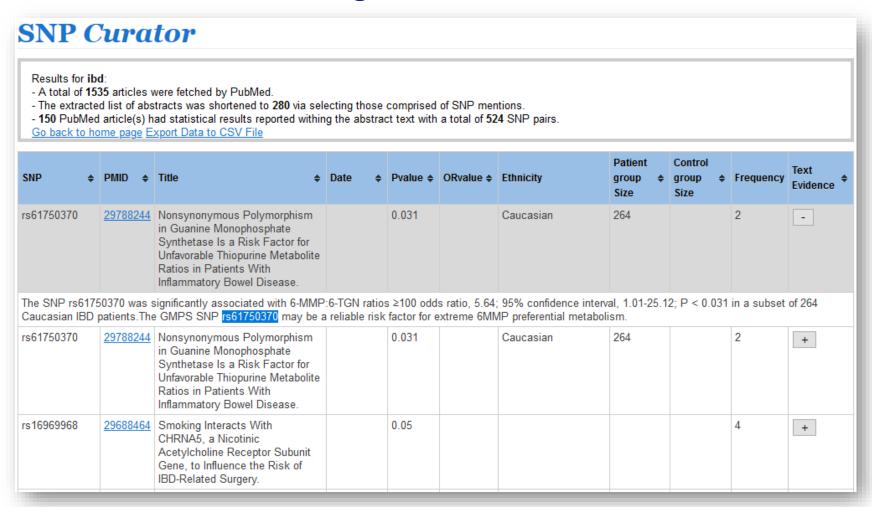
Sample #2: Computing Visits Data (COVIDA)

• The DEDUCE method for de-identification of Dutch medical text

[Legend: Patient Persoon Locatie Instelling Datum Leeftijd Patientnummer Telefoonnummer Url]

Annotated text

Intakegesprek met Jan Jansen (e:j.g.jsnen_1966@email.com, t:0612345678, patnr:1243567). Het betreft een 51-jarige man die van 14 maart t/m 31 juli op de polikliniek van het umcu zal worden behandeld i.v.m. somberheidsklachten. Patient is woonachtig aan de Voorstraat 45b in Utrecht en zal hier onder behandeling komen te staan van Peter de Visser.


De-identified text

Intakegesprek met <PATIENT> (e:<URL-1>, t:<TELEFOONNUMMER-1>, patnr:<PATIENTNUMMER-1>). Het betreft een <LEEFTIJD-1>-jarige man die van <DATUM-1> t/m <DATUM-2> op de polikliniek van het <INSTELLING-1> zal worden behandeld i.v.m. somberheidsklachten. Patient is woonachtig aan de <LOCATIE-1> in <LOCATIE-2> en zal hier onder behandeling komen te staan van <PERSOON-1>.

url: http://ads.science.uu.nl/deduce/

Sample #3: SNPcurator

PubMed Literature mining of enriched SNP-disease associations

url: https://snpcurator.science.uu.nl/

Agenda

1. Introductions

About me, Data Science concepts

2. Research projects showcase

• STRIPA, COVIDA, SNPcurator

3.Research agenda

Research Framework & Instantiation

4. Discussion

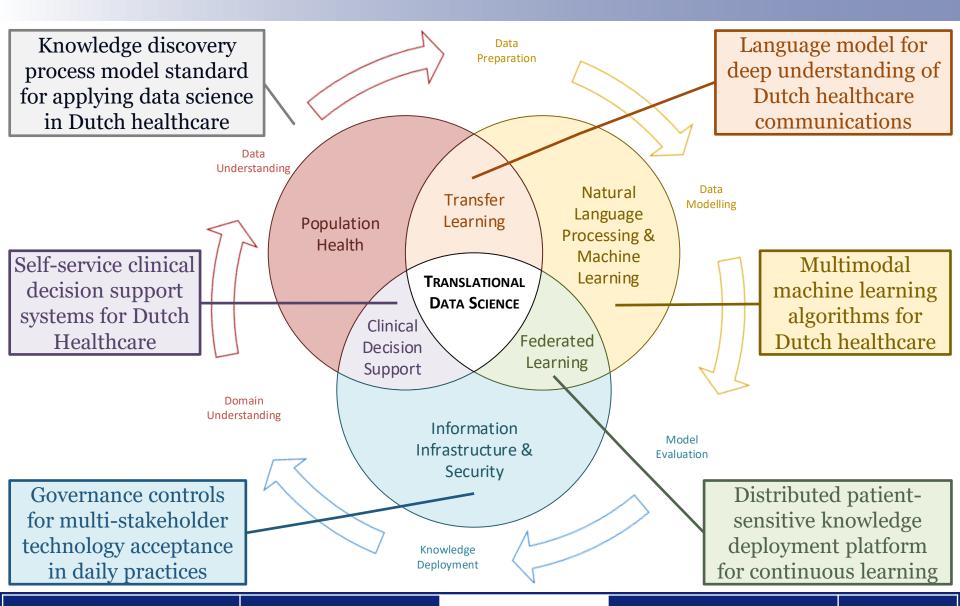
Alignment with NLAIC wg B&PP

Problem: Three Challenges to Appropriate Care

• Regarding *Diagnostics*:

New, clinically relevant and <u>personalised patient profiles</u> are urgently needed as a starting point for diagnostics and treatment, that do justice to the <u>impact of a patient</u>'s context and the dynamics of health. [i.e. NLP/ML]

• Regarding *Treatment*:


New, personalised treatment <u>decision support systems</u> (DSS) are needed to improve shared decision making, <u>treatment effectivity</u> and outcome of especially complex patients. [i.e. Infrastructure]

• Regarding *Monitoring*:

New, patient-centred network approaches are needed to stimulate effective appropriate care. [i.e. Health process]

Agenda: Translational Data Science for PH

Example Research Question:

What? How can we improve population health

How? with e-mental health and medication services

Who? for socioeconomically vulnerable older adults

Why? to promote healthy aging

Where? in the Population Health Living Lab?

Agenda

1. Introductions

About me, Data Science concepts

2. Research projects showcase

• STRIPA, COVIDA, SNPcurator

3. Research agenda

Research Framework & Instantiation

4.Discussion?

Alignment with NLAIC wg B&PP

Leiden University
Campus The Hague