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Abstract: Fairness and bias are crucial concepts in artificial intelligence, yet they are relatively
ignored in machine learning applications in clinical psychiatry. We computed fairness metrics and
present bias mitigation strategies using a model trained on clinical mental health data. We collected
structured data related to the admission, diagnosis, and treatment of patients in the psychiatry
department of the University Medical Center Utrecht. We trained a machine learning model to
predict future administrations of benzodiazepines on the basis of past data. We found that gender
plays an unexpected role in the predictions—this constitutes bias. Using the AI Fairness 360 package,
we implemented reweighing and discrimination-aware regularization as bias mitigation strategies,
and we explored their implications for model performance. This is the first application of bias
exploration and mitigation in a machine learning model trained on real clinical psychiatry data.
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1. Introduction

For over ten years, there has been increasing interest in the psychiatry domain for using
machine learning (ML) to aid psychiatrists and nurses [1]. Recently, multiple approaches
have been tested for violence risk assessment (VRA) [2–4], suicidal behaviour prediction [5],
and the prediction of involuntary admissions [6], among others.

Using ML for clinical psychiatry is appealing both as a time-saving instrument and as
a way to provide insights to clinicians that might otherwise remain unexploited. Clinical
ML models are usually trained on patient data, which includes some protected attributes,
such as gender or ethnicity. We desire models to give equivalent outputs for equivalent
patients that differ only in the value of a protected attribute [7]. Yet, a systematic assessment
of the fairness of ML models used for clinical psychiatry is lacking in the literature.

As a case study, we focused on the task of predicting future administrations of benzo-
diazepines. Benzodiazepines are prescription drugs used in the treatment of, for example,
anxiety and insomnia. Long-term use of benzodiazepines is associated with increased
medical risks, such as cancer [8]. In addition, benzodiazepines in high doses are addictive,
with complicated withdrawal [9]. From a clinical perspective, gender should not play
a role in the prescription of benzodiazepines [10,11]. Yet, biases in the prescription of
benzodiazepines have been explored extensively in the literature; some protected attributes
that contributed to bias were prescriber gender [12], patient ethnicity [13,14], and patient
gender [15], as well as interaction effects between some of these protected attributes [16,17].
There is no conclusive consensus regarding these correlations, with some studies finding
no correlations between sociodemographic factors and benzodiazepines prescriptions [18].

We explored the effects of gender fairness bias on a model trained to predict the future
administration of benzodiazepines to psychiatric patients based on past data, including
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past doses of benzodiazepines. A possible use case of this model is to identify patients
that are at risk of taking benzodiazepines for too long. We hypothesized that our model is
likely to unfairly use the patient’s gender in making predictions. If that is the case, then
mitigation strategies must be put in place to reduce this bias. We expect that there will be a
cost to predictive performance.

Our research questions are:

1. For a model trained to predict future administrations of benzodiazepines based on
past data, does gender unfairly influence the decisions of the model?

2. If gender does influence the decisions of said model, how much model performance
is sacrificed when applying mitigation strategies to avoid the bias?

To answer these questions, we employed a patient dataset from the University Medical
Center (UMC) Utrecht and trained a model to predict future administrations of benzo-
diazepines. We applied the bias discovery and mitigation toolbox AI Fairness 360 [19].
Whenever we found that gender bias was present in our model, we presented an appro-
priate way to mitigate this bias. Our main contribution is a first implementation of a
fairness evaluation and mitigation framework on real-world clinical data from the psychia-
try domain. We present a way to mitigate a real and well-known bias in benzodiazepine
prescriptions, without loss of performance.

In Section 2, we describe our materials and methods, including a review of previous
work in the field. In Section 3, we present our results, which we discuss in Section 4. We
present our conclusions in Section 5.

2. Materials and Methods

2.1. Related Work

The study of bias in machine learning has garnered attention for several years [20].
The authors in [21] outlined the dangers of selection bias. Even when researchers attempt
to be unbiased, problems might arise, such as bias from an earlier work trickling down into
a new model [22] or implicit bias from variables correlated with protected attributes [23,24].
The authors in [25] reviewed bias in machine learning, noting also that there is no industry
standard for the definition of fairness. The authors in [26] evaluated bias in a machine
learning model used for university admissions; they also point out the difference between
individual and group fairness, as do [27]. The authors in [28,29] provided theoretical frame-
works for the study of fairness. Along the same lines, refs. [30,31] provided metrics for the
evaluation of fairness. The authors in [32,33] recommend methods for mitigating bias.

As for particular applications, refs. [34–36] studied race and gender bias in facial
analysis systems. The authors in [37] evaluated fairness in dialogue systems, and while
they did not actually evaluate ML models, ref. [38] highlighted the importance of bias
mitigation in AI for education.

In the medical domain, ref. [39] pointed out the importance of bias mitigation. Indeed,
ref. [40] uncovered bias in post-operative complication predictions. The authors in [41]
found that disparities metrics change when transferring models across hospitals. Finally,
ref. [42] explored the impact of random seeds on the fairness of classifiers using clinical
data from MIMIC-III, and found that small sample sizes can also introduce bias.

No previous study on ML fairness or bias focuses on the psychiatry domain. This
domain is interesting because bias seems to be present in the daily practice. We have already
discussed in the introduction how bias is present in the prescription of benzodiazepines.
There are also gender disparities in the prescription of zolpidem [43] and in the act of
seeking psychological help [44]. The authors in [45] also found racial disparities in clinical
diagnoses of mania. Furthermore, psychiatry is a domain where a large amount of data is
in the form of unstructured text, which is starting to be exploited for ML solutions [46,47].
Previous work has also focused on the explainability of text-based computational support
systems in the psychiatry domain [48]. It will be crucial—as these text-based models
begin to be applied in the clinical practice—to ensure that they too are unbiased towards
protected attributes.
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2.2. Data

We employed de-identified patient data from the Electronic Health Records (EHRs)
from the psychiatry department at the UMC Utrecht. Patients in the dataset were admitted
to the psychiatry department between June 2011 and May 2021. The five database tables
included were: admissions, patient information, medication administered, diagnoses, and
violence incidents. Table 1 shows the variables present in each of the tables.

Table 1. Datasets retrieved from the psychiatry department of the UMC Utrecht, with the variables
present in each dataset that are used for this study. Psychiatry is divided into four nursing wards. For
the “medication” dataset, the “Administered” and “Not administered” variables contain, in principle,
the same information; however, sometimes only one of them is filled.

Dataset Variable Type

Admissions

Admission ID Identifier
Patient ID Identifier
Nursing ward ID Identifier
Admission date Date
Discharge date Date
Admission time Time
Discharge time Time
Emergency Boolean
First admission Boolean
Gender Man/Woman
Age at admission Integer
Admission status Ongoing/Discharged
Duration in days Integer

Medication

Patient ID Identifier
Prescription ID Identifier
ATC code (medication ID) String
Medication name String
Dose Float
Unit (for dose) String
Administration date Date
Administration time Time
Administered Boolean
Dose used Float
Original dose Float
Continuation After Suspension Boolean
Not administered Boolean

Diagnoses

Patient ID Identifier
Diagnosis number Identifier
Start date Date
End date Date
Main diagnosis group Categorical
Level of care demand Numeric
Multiple problem Boolean
Personality disorder Boolean
Admission Boolean
Diagnosis date Date

Aggression
Patient ID Identifier
Date of incident Date
Start time Time

Patient Patient ID Identifier
Age at start of dossier Integer
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We constructed a dataset where each data point was 14 days after the admission of a
patient. We selected only completed admissions (admission status = “discharged”) that
lasted at least 14 days (duration in days ≥ 14). A total of 3192 admissions (i.e., data points)
were included in our dataset. These were coupled with data from the other four tables
mentioned above. The nursing ward ID was converted to four binary variables; some rows
did not belong to any nursing ward ID (because, for example, the patient was admitted
outside of psychiatry and then transferred to psychiatry); these rows have zeros for all four
nursing ward ID columns.

For diagnoses, the diagnosis date was not always present in the dataset. In that case,
we used the end date of the treatment trajectory. If that was also not present, we used the
start date of the treatment trajectory. One of the entries in the administered medication table
had no date of administration; this entry was removed. We only consider administered
medication (administered = True). Doses of various tranquillizers were converted to an
equivalent dose of diazepam, according to Table 2 [49]. (This is the normal procedure when
investigating benzodiazepine use. All benzodiazepines have the same working mechanism.
The only differences are the half-life and the peak time. So, when studying benzodiazepines,
it is allowed to make an equivalent dose of one specific benzodiazepine).

Table 2. List of tranquillizers considered in this study, along with the multipliers used for scaling the
doses of those tranquillizers to a diazepam-equivalent dose. The last column is the inverse of the
centre column.

Tranquillizer Multiplier mg/(mg Diazepam)

Diazepam 1.0 1.00
Alprazolam 10.0 0.10
Bromazepam 1.0 1.00
Brotizolam 40.0 0.03
Chlordiazepoxide 0.5 2.00
Clobazam 0.5 2.00
Clorazepate potassium 0.75 1.33
Flunitrazepam 0.1 10
Flurazepam 0.33 3.03
Lorazepam 5.0 0.20
Lormetazepam 10.0 0.10
Midazolam 1.33 0.10
Nitrazepam 1.0 1.00
Oxazepam 0.33 3.03
Temazepam 1.0 1.00
Zolpidem 1.0 1.00
Zopiclone 1.33 0.75

For each admission, we obtained the age of the patient at the start of the dossier from
the patient table. The gender is reported in the admissions table; only the gender assigned
at birth is included in this dataset. We counted the number of violence incidents before
admission and the number of violence incidents during the first 14 days of admission.
The main diagnosis groups were converted to binary values, where 1 means that this
diagnosis was present for that admission, and that it took place during the first 14 days
of admission. Other binary variables derived from the diagnoses table were “Multiple
problem” and “Personality disorder”. For all diagnoses present for a given admission,
we computed the maximum and minimum “levels of care demand”, and saved them as
two new variables. Matching the administered medication to the admissions by patient
ID and date, we computed the total amount of diazepam-equivalent benzodiazepines
administered in the first 14 days of admission, and the total administered in the remainder
of the admission. The former is one of the predictor variables. The target variable is binary,
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i.e., whether benzodiazepines were administered during the remainder of the admission
or not.

The final dataset consists of 3192 admissions. Of these, 1724 admissions correspond
to men, while 1468 correspond to women. A total of 2035 admissions had some benzodi-
azepines administered during the first 14 days of admission, while 1980 admissions had
some benzodiazepines administered during the remainder of the admission. Table 3 shows
the final list of variables included in the dataset.

Table 3. List of variables in the final dataset.

Variable Type

Patient ID Numeric
Emergency Binary
First admission Binary
Gender Binary
Age at admission Numeric
Duration in days Numeric
Age at start of dossier Numeric
Incidents during admission Numeric
Incidents before admission Numeric
Multiple problem Binary
Personality disorder Binary
Minimum level of care demand Numeric
Maximum level of care demand Numeric
Past diazepam-equivalent dose Numeric
Future diazepam-equivalent dose Numeric
Nursing ward: Clinical Affective and Psychotic Disorders Binary
Nursing ward: Clinical Acute and Intensive Care Binary
Nursing ward: Clinical Acute and Intensive Care Youth Binary
Nursing ward: Clinical Diagnosis and Early Psychosis Binary
Diagnosis: Attention Deficit Disorder Binary
Diagnosis: Other issues that may be a cause for concern Binary
Diagnosis: Anxiety disorders Binary
Diagnosis: Autism spectrum disorder Binary
Diagnosis: Bipolar Disorders Binary
Diagnosis: Cognitive disorders Binary
Diagnosis: Depressive Disorders Binary
Diagnosis: Dissociative Disorders Binary
Diagnosis: Behavioural disorders Binary
Diagnosis: Substance-Related and Addiction Disorders Binary
Diagnosis: Obsessive Compulsive and Related Disorders Binary
Diagnosis: Other mental disorders Binary
Diagnosis: Other Infant or Childhood Disorders Binary
Diagnosis: Personality Disorders Binary
Diagnosis: Psychiatric disorders due to a general medical condition Binary
Diagnosis: Schizophrenia and other psychotic disorders Binary
Diagnosis: Somatic Symptom Disorder and Related Disorders Binary
Diagnosis: Trauma- and stressor-related disorders Binary
Diagnosis: Nutrition and Eating Disorders Binary

2.3. Evaluation Metrics

The performance of the model is to be evaluated by the use of the balanced accuracy
(average of true positive rate and true negative rate) and the F1 score. (As seen in Section 2.2,
the distribution of data points across classes is almost balanced. With that in mind, we
could have used accuracy instead of balanced accuracy. However, we had decided on an
evaluation procedure before looking at the data, based on previous experience in the field.
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We find no reason to believe that our choice should affect the results significantly.) As for
quantifying bias, we used four metrics:

• Statistical Parity Difference: Discussed in [26] as the difference between the correctly
classified instances for the privileged and the unprivileged group. If the statistical
parity difference is 0, then the privileged and unprivileged groups receive the same
percentage of positive classifications. Statistical parity is an indicator for representation
and therefore a group fairness metric. If the value is negative, the privileged group
has an advantage.

• Disparate Impact: Computed as the ratio of the rate of favourable outcome for the
unprivileged group to that of the privileged group [31]. This value should be close to
1 for a fair result; lower than 1 implies a benefit for the privileged group.

• Equal Opportunity Difference: The difference between the true positive rates between
the unprivileged group and the privileged group. It evaluates the ability of the model
to classify the unprivileged group compared to the privileged group. The value should
be close to 0 for a fair result. If the value is negative, then the privileged group has
an advantage.

• Average Odds Difference: The difference between false positives rates and true positive
rates between the unprivileged group and privileged group. It provides insights into
a possible positive biases towards a group. This value should be close to 0 for a fair
result. If the value is negative, then the privileged group has an advantage.

2.4. Machine Learning Methods

We used AI Fairness 360, a package for the discovery and mitigation of bias in machine
learning models. The protected attribute in our dataset is gender, while the favourable class
is “man”. We employ two classification algorithms implemented in ScikitLearn [50]: logistic
regression and random forest (We consider these models because they are simple, widely
available and widely used within and beyond the clinical field). For logistic regression,
we use the “liblinear” solver. For the random forest classifier, we use 500 estimators, with
min_samples_leaf equal to 25.

There are three types of bias mitigation techniques: pre-processing, in-processing, and
post-processing [23]. Pre-processing techniques mitigate bias by removing the underlying
discrimination from the dataset. In-processing techniques are modifications to the machine
learning algorithms to mitigate bias during model training. Post-processing techniques
seek to mitigate bias by equalizing the odds post-training. We used two methods for bias
mitigation. As a pre-processing method, we used the reweighing technique of [32], and
retrained our classifiers on the reweighed dataset. As an in-processing method, we added a
discrimination-aware regularization term to the learning objective of the logistic regression
model. This is called a prejudice remover. We set the fairness penalty parameter eta to
25, which is high enough that prejudice will be removed aggressively, while not too high,
such that accuracy would be significantly compromised [33]. Both of these techniques
were seamlessly implemented in AI Fairness 360. To apply post-processing techniques in
practice, one needs a training set and a test set; once the model is trained, the test set is
used to determine how outputs should be modified in order to limit bias. However, in
clinical applications, datasets tend to be small, so we envision a realistic scenario in which
the entire dataset is used for development, making the use of post-processing methods
impossible. For this reason, we did not study these methods further. The workflow of data,
models, and bias mitigation techniques is shown in Figure 1.

To estimate the uncertainty due to the choice of training data, we used 5-fold cross-
validation, with patient IDs as group identifiers to avoid using the same sample for develop-
ment and testing. Within each fold, we again split the development set into 62.5% training
and 37.5% validation, once again with patient IDs as group identifiers, to avoid using the
same sample for training and validation. We trained the model on the training set, and used
the validation set to compute the optimal classification threshold, which is the threshold
that maximizes the balanced accuracy on the validation set. We then retrained the model

94



Information 2022, 13, 237

on the entire development set, and computed the performance and fairness metrics on the
test set. Finally, we computed the mean and standard deviation of all metrics across the
5 folds.

Figure 1. Workflow of data, machine learning models, and bias mitigation techniques used in
this research.

The code used to generate the dataset and train the machine learning models is pro-
vided as a GitHub repository (https://github.com/PabloMosUU/FairnessForPsychiatry,
accessed on 16 February 2022).

3. Results

Each of our classifiers output a continuous prediction for each test data point. We
converted these to binary classifications by comparing with a classification threshold.
Figures 2–7 show the trade-off between balanced accuracy and fairness metrics as a func-
tion of the classification threshold. Figures 2 and 3 show how the disparate impact error
and average odds difference vary together with the balanced accuracy as a function of the
classification threshold of a logistic regression model with no bias mitigation, for one of
the folds of cross-validation. The corresponding plots for the random forest classifier show
the same trends. The performance and fairness metrics after cross-validation are shown
in Tables 4 and 5, respectively. Since we observed bias (see Section 4 for further discus-
sion), we implemented the mitigation strategies detailed in Section 2.4. Figures 4 and 5
show the validation plots for a logistic regression classifier with reweighing for one of
the folds of cross-validation; the plots for the random forest classifier show similar trends.
Figures 6 and 7 show the validation plots for a logistic regression classifier with preju-
dice remover.
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Figure 2. Balanced accuracy and disparate impact error versus classification threshold for a logistic
regression classifier with no bias mitigation. The dotted vertical line is the threshold that maximizes
balanced accuracy. The plot shown corresponds to one of the folds of cross-validation. Disparate
impact error, equal to 1-min(DI, 1/DI), where DI is the disparate impact, is the difference between
disparate impact and its ideal value of 1.
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Figure 3. Balanced accuracy and average odds difference versus classification threshold for a logistic
regression classifier with no bias mitigation. The dotted vertical line is the threshold that maximizes
balanced accuracy. The plot shown corresponds to one of the folds of cross-validation.
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Figure 4. Balanced accuracy and disparate impact error versus classification threshold for a logistic
regression classifier with reweighing. The dotted vertical line is the threshold that maximizes balanced
accuracy. The plot shown corresponds to one of the folds of cross-validation. Disparate impact error,
equal to 1-min(DI, 1/DI), where DI is the disparate impact, and the difference between disparate
impact and its ideal value of 1.
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Figure 5. Balanced accuracy and average odds difference versus classification threshold for a logistic
regression classifier with reweighing. The dotted vertical line is the threshold that maximizes balanced
accuracy. The plot shown corresponds to one of the folds of cross-validation.
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Figure 6. Balanced accuracy and disparate impact error versus classification threshold for a logistic
regression classifier with prejudice remover. The dotted vertical line is the threshold that maximizes
balanced accuracy. The plot shown corresponds to one of the folds of cross-validation. Disparate
impact error, equal to 1-min(DI, 1/DI), where DI is the disparate impact, and the difference between
disparate impact and its ideal value of 1.
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Figure 7. Balanced accuracy and average odds difference versus classification threshold for a logistic
regression classifier with prejudice remover. The dotted vertical line is the threshold that maximizes
balanced accuracy. The plot shown corresponds to one of the folds of cross-validation.
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Table 4. Classification metrics for logistic regression (LR) and random forest (RF) classifiers including
bias mitigation strategies reweighing (RW) and prejudice remover (PR). The classification metrics are
balanced accuracy (Accbal) and F1 score. The errors shown are standard deviations.

Model Performance

Clf. Mit. Accbal F1

LR 0.834 ± 0.015 0.843 ± 0.014
RF 0.843 ± 0.018 0.835 ± 0.020

LR RW 0.830 ± 0.014 0.839 ± 0.011
RF RW 0.847 ± 0.019 0.840 ± 0.020

LR PR 0.793 ± 0.020 0.802 ± 0.029

Table 5. Fairness metrics for logistic regression (LR) and random forest (RF) classifiers including bias
mitigation strategies reweighing (RW) and prejudice remover (PR). The fairness metrics are disparate
impact (DI), average odds difference (AOD), statistical parity difference (SPD), and equal opportunity
difference (EOD). The errors shown are standard deviations.

Model Fairness

Clf. Mit. DI AOD SPD EOD

LR 0.793 ± 0.074 −0.046 ± 0.021 −0.110 ± 0.038 −0.038 ± 0.028
RF 0.796 ± 0.071 −0.018 ± 0.017 −0.083 ± 0.031 −0.013 ± 0.035

LR RW 0.869 ± 0.066 −0.003 ± 0.013 −0.066 ± 0.035 0.004 ± 0.034
RF RW 0.830 ± 0.077 −0.004 ± 0.023 −0.070 ± 0.034 0.001 ± 0.043

LR PR 0.886 ± 0.056 −0.008 ± 0.003 −0.060 ± 0.034 −0.020 ± 0.045

4. Discussion

4.1. Analysis of Results

As reported in Table 5, all fairness metrics show results favourable to the privileged
group (see Section 2.3 for a discussion of the fairness metrics we use). Reweighing improved
the fairness metrics for both classifiers. The prejudice remover also improved the fairness
metrics, albeit at a cost in performance. There was no big difference in performance between
the logistic regression and random forest classifiers. If fairness is crucial, then the logistic
regression classifier gives more options in terms of the mitigation strategies. The better
mitigation strategy is the one closest to the data, for it requires less tinkering with the
model, which can lead to worse explainability.

In addition, we computed, for each fold of cross-validation, the difference for each per-
formance and fairness metric between a model with a bias mitigator and the corresponding
model without bias mitigation. We then took the mean and standard deviation of those
differences, and report the results for performance and fairness metrics on Tables 6 and 7,
respectively. We can see that differences in performance for reweighing are mostly small,
while the gains in fairness metrics are statistically significant at a 95% confidence level.
Meanwhile, the prejudice remover incurs a greater cost in performance, with no apparent
greater improvement to the fairness metrics.
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Table 6. Classification metric differences of models with bias mitigators reweighing (RW) and
prejudice remover (PR) compared to a baseline without bias mitigation, for logistic regression (LR)
and random forest (RF) classifiers. The classification metrics are balanced accuracy (Accbal) and F1
score. The errors shown are standard deviations. Differences significant at 95% confidence level are
shown in bold.

Model Performance

Clf. Mit. ΔAccbal ΔF1

LR PR −0.040 ± 0.013 −0.041 ± 0.025
LR RW −0.003 ± 0.013 −0.005 ± 0.013

RF RW 0.003 ± 0.002 0.005 ± 0.001

Table 7. Fairness metric differences of models with bias mitigators reweighing (RW) and prejudice
remover (PR) compared to a baseline without bias mitigation, for logistic regression (LR) and random
forest (RF) classifiers. The fairness metrics are disparate impact (DI), average odds difference (AOD),
statistical parity difference (SPD) and equal opportunity difference (EOD). The errors shown are
standard deviations. Differences significant at 95% confidence level are shown in bold.

Model Fairness

Clf. Mit. ΔDI ΔAOD ΔSPD ΔEOD

LR PR 0.092 ± 0.036 0.038 ± 0.021 0.050 ± 0.019 0.018 ± 0.042
LR RW 0.075 ± 0.021 0.043 ± 0.017 0.043 ± 0.014 0.042 ± 0.034

RF RW 0.034 ± 0.013 0.014 ± 0.006 0.013 ± 0.006 0.014 ± 0.011

4.2. Limitations

Some diagnoses did not have a diagnosis date filled out in the raw dataset. In those
cases, we used the treatment end date. Some data points did not have a value for that
variable either, and in those cases, we used the treatment start date. This leads to an
inconsistent definition of the diagnosis date, and hence to inconsistencies in the variables
related to diagnoses during the first 14 days of admission. However, we carried out the
analysis again with only the diagnoses for which the diagnosis dates were present in the
raw data, and the results followed the same trends.

On a similar note, we removed a few medication administrations that did not have an
administering date. A better solution would have been to remove all data corresponding to
those patients, albeit at the cost of having fewer data points. We carried out the analysis
again in that configuration, and obtained similar results.

Finally, this work considered only the diagnoses that took place within the first 14 days
of admission. It might have been interesting to also consider diagnoses that took place
before admission. We leave this option for future work.

4.3. Future Work

The present work considered benzodiazepine prescriptions administered during the
remainder of each patient’s admission. To make the prediction task fairer for the computer,
we could consider predicting benzodiazepines administered during a specific time window,
for example, days 15–28 of an admission.

Previous work noted a possible bias between the gender of the prescriber and the
prescriptions of benzodiazepines [16,17]. It would be interesting to look into this correlation
in our dataset as well; one could train a model to predict, on the basis of patient and
prescriber data, whether benzodiazepines will be prescribed. If there are correlations
between the gender of the prescriber and the prescription of benzodiazepines, we could
raise a warning to let the practitioner know that the model thinks there might be a bias.
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Finally, there are other medications for which experts suspect there could be gender
biases in the prescriptions and administrations, such as antipsychotics and antidepressives.
It would be beneficial to also study those administrations using a similar pipeline as the
one developed here.

As a final note, [51] warned against the use of blind applications of fairness frameworks
in healthcare. Thus, the present study should be considered only as a demonstration of
the importance of considering bias and mitigation in clinical psychiatry machine learning
models. Further work is necessary to understand these biases on a deeper level, and what
course of action should be taken.

5. Conclusions

Given our results (Section 3) and discussion thereof (Section 4.1), we can conclude
that a model trained to predict future administrations of benzodiazepines based on past
data is biased by the patients’ genders. Perhaps surprisingly, reweighing the data (a pre-
processing step) seems to mitigate this bias quite significantly, without loss of performance.
The in-processing method with a prejudice remover also mitigated this bias, but at a cost
to performance.

This is the first fairness evaluation of a machine learning model trained on real clinical
psychiatric data. Future researchers working with such models should consider comput-
ing fairness metrics and, when necessary, adopt mitigation strategies to ensure patient
treatment is not biased with respect to protected attributes.
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